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1 Gravitational potential

ref: https://www.zhihu.com/question/416630965

~F =
GMm

r2
~er =

GMm

r3
~r

For gravitational field

~A =
GM

r3
~r = ~∇Φ

suppose that gravitational potential Φ is 0 at ∞

Φ = −
∫ ∞
r

GM

r2
dr = −GM

r

For one point with mass M in a closed surface,

Φ =

∮
S

~A · d~S

and suppose such the surface is a sphere

Φ =

∮
S

~A · d~S =

∮
S

GM

r2
dS =

GM

r2
· 4πr2 = 4πGM

we get

M =

∫∫∫
V

ρdV =

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ r

0

r2drρ = 4πρ · r
3

3

From Gauss’ law

4πG

∫∫∫
V

ρdV =

∮
S

~A · d~S =

∫∫∫
V

~∇ · ~AdV

we obtain Poisson equation for gravitational field:

∇2Φ = ~∇ · ~∇Φ = ~∇ · ~A = 4πGρ

In addition, we could get the same result by the method below

∇2Φ = ~∇ · ~A = ~∇ · (GM
r3

~r) = ~∇ ·
(

4

3
πGρ(~x+ ~y + ~z)

)
=

4

3
πGρ~∇ · (~x+ ~y + ~z) = 4πGρ

2 Gauge & Tensor

We select the gauge below for Minkowski spacetime ds2 = −dt2 + dx2 + dy2 + dz2 = ηµνx
µxν

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Poincaré gauge: ds2 = (dx2 + dy2)/y2
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electromagnetic tensor
https://www.zhihu.com/question/383212450/answer/1139032723
https://en.wikipedia.org/wiki/Electromagnetic tensor

F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0



Fµν = ηµαF
αβηβν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0



The energy–momentum tensor is symmetric, T ab = T ba, in which, T 00 is energy density;
T 0i = T i0 refers to the flux of relativistic mass across the xi surface is equivalent to the density of
the ith component of linear momentum; T ij represent flux of ith component of linear momentum
across the xj surface. In particular, T ii refers to normal stress, and T ij refers to shear stress.

T µν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (perfect fluid)

3 Action principle

Lagrangian
L = T − V

Hamiltonian
H = T + V

The action for the system with potential is defined as

S =

∫
Ldt =

∫
dt

[
1

2
m

(
d~x

dt

)2

− V (x)

]
If the potential is zero, then

S =

∫
Ldt =

∫
dt

[
1

2
m

(
d~x

dt

)2
]

=
1

2
m

∫
(d~x)2

dt

Ignore the high orders in the below equation,(
a− ε2

2a

)2

= a2 − ε2 +
ε4

4a2

we have the approximation
√
a2 − ε2 ≈ a− ε2

2a
+ · · ·
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ε2

2a
≈ −
√
a2 − ε2 + a+ · · ·

therefore
(∆~x)2

2∆t
= c

(∆~x)2

2c∆t
= −c

√
(c∆t)2 − (∆~x)2 + c2∆t

namely

S = −mc
∫ √

(cdt)2 − (d~x)2 +mc2

∫
dt

the last term only depends on tinitial and tfinal, distributing nothing toward the integration.

S = −m
∫ √

dt2 − (d~x)2 = −m
∫ √

−ηµνdXµdXν

S = −m
∫ √

−ηµνdXµdXν = −m
∫
dζ

√
−ηµν

dXµ

dζ

dXν

dζ
=

∫
Ldζ

L = −m

√
−ηµν

dXµ

dζ

dXν

dζ

For massless particles, re-define

S̃ = −1

2

∫
dζ

(
σ(ζ)

(
dX

dζ

)2

+
m2

σ(ζ)

)

where (
dX

dζ

)2

= −ηµν
dXµ

dζ

dXν

dζ

Since dσ
dζ

does not appear, we apply Euler-Lagrange equation,

d

dζ

(
δS̃

δ dσ
dζ

)
− δS̃

δσ
= 0 ⇒ δS̃

δσ
= 0

obtaining
m2

σ(ζ)2
=

(
dX

dζ

)2

Insert Xλ into E-L eq. Since Xλ is not the manifest variable of S̃

d

dζ

(
δS̃

δ dX
λ

dζ

)
=

d

dζ

(
σηµλ

dXµ

dζ

)
=

d

dζ

 m√
(dX
dζ

)2
ηµλ

dXµ

dζ

 = 0

With the definition (dX
dτ

)2 = 1, we replace dζ as dτ . Therefore, d2Xµ

dτ2
= 0, the same form of S

appears again.
The action for massless particles

Smassless =
1

2

∫
dζ

(
σηµν

dXµ

dζ

dX

dζ

)
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Potential outside the square root, Option E : (electromagnetism)

S = −
∫ [

m
√
−ηµνdxµdxν + V (x)dt

]
Potential inside the square root, Option G : (gravity)

S = −m
∫ √(

1 +
2V

m

)
dt2 − d~x2

Option E improved :

S = −
∫ [

m
√
−ηµνdxµdxν + Aµ(x)dxµ

]
Option G improved :

S = −m
∫ √

−gµν(x)dxµdxν

4 Geodesic

Geodesic equation
∂2Xλ

∂τ 2
+ Γλµν

dXµ

dτ

dXν

dτ
= 0

with Christoffel symbol Γλµν

Γλµν =
1

2
gλσ(

∂gµσ
∂Xν

+
∂gνσ
∂Xµ

− ∂gµν
∂Xσ

)

Suppose V µ = dXµ

dl
, then we get the equation

dV ρ

dl
+ ΓρµνV

µV ν = 0

Since there would be external forces (without gravity as the essential property of spacetime),
we write geodesic eq as

∂2Xλ

∂τ 2
+ Γλµν

dXµ

dτ

dXν

dτ
= fλ(X)

As for the gauge (dΩ2 = dθ2 + sin2 θdϕ2)

ds2 = −dt2 + a(t)2d~x2 = −dt2 + a(t)2(dr2 + r2dΩ2)

the action

S = −m
∫
dτ

[(
dt

dτ

)2

− a(t)2

(
d~x

dτ

)2
] 1

2

insert that into geodesic eq.
d2

dτ 2
+ a(t)ȧ(t)

(
d~x

dτ

)2

= 0
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d

dτ

(
a(t)2d~x

dτ

)
= 0 ⇒ d2~x

dτ 2
+

2ȧ(t)

a(t)

dt

dτ

d~x

dτ
= 0(

dt

dτ

)2

− a(t)2

(
d~x

dτ

)2

= 1

Γ0
ij = aȧδij Γi0j = Γij0 =

ȧ

a
δij

Introduce the gauge related to the universe a(t) = eHt, where H is Hubble’s constant.
Suppose the moment to give out signals as tS, then Rmax = e−tS . If R > Rmax, signals would
not arrive at R; if Rmax > R > 1

2
Rmax, signals could arrive but no replies received.

Ref - https://zhuanlan.zhihu.com/p/163704300
For the sake of easier calculations, we multiply dxµdxν with Christoffel symbol

Γλµνdx
µdxν =

1

2
gλσ(

∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)dxµdxν

=
1

2
gλσ(dgµσdx

µ + dgνσdx
ν − ∂gµν

∂xσ
dxµdxν)

= gλσ(dgµσdx
µ − 1

2

∂ds2

∂xσ
)

Example 1, for ds2 = r2dθ2 + r2 sin2 θdφ2 = 0dt2 + 0dr2 + r2dθ2 + r2 sin2 θdφ2

gµν =


0 0 0 0
0 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 gµν =


0 0 0 0
0 0 0 0
0 0 1/r2 0
0 0 0 1/r2 sin2 θ


Γθµνdx

µdxν = gθθ(dgθθdθ −
1

2

∂ds2

∂θ
)

=
1

r2
(2rdrdθ − 1

2
2r2 sin θ cos θdφ2)

=
2

r
drdθ − sin θ cos θdφ2

thus

Γθrθ = Γθθr =
1

r
Γθφφ = − sin θ cos θ

Γφµνdx
µdxν = gφφ(dgφφdφ−

1

2

∂ds2

∂φ
)

=
1

r2 sin2 θ
(2r2 sin θ cos θdθdφ+ 2r sin2 θdrdφ− 0)

= 2
cos θ

sin θ
dθdφ+

2

r
drdφ

thus

Γφrφ = Γφφr =
1

r
Γφθφ = Γφφθ = cot θ

5



Verify:

Γθrθ =
1

2
gθθ(

∂gθθ
∂r

+
∂gθθ
∂θ
− ∂grθ

∂θ
)

=
1

2
gθθ

∂gθθ
∂r

=
1

2
· 1

r2
· 2r =

1

r

Γφrφ =
1

2
gφφ(

∂gφφ
∂r

+
∂gφr
∂φ
− ∂grφ

∂φ
)

=
1

2
gφφ

∂gφφ
∂r

=
1

2
· 1

r2 sin2 θ
· 2r sin2 θ =

1

r

Consider ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2

Γrµνdx
µdxν = grr

(
dgrrdr −

1

2

∂ds2

∂r

)
= −1

2
(2rdθ2 + 2r sin2 θdφ2)

= −rdθ2 − r sin2 θdφ2

Γrθθ = −r Γrφφ = −r sin2 θ

Example 2, ds2 = −N2(t)dt2 + a2(t)ĝijdx
idxj

Γtµνdx
µdxν = gtt(dgttdt−

1

2

∂ds2

∂t
)

=
1

−N2

(
−2NṄdt2 − 1

2
(−2NṄdt2 + 2aȧdŝ2)

)
=

1

−N2
(−NṄdt2 − aȧdŝ2)

=
Ṅ

N
dt2 +

aȧ

N2
dŝ2

Γttt =
Ṅ

N
Γtij =

aȧ

N2
ĝij

Γiµνdx
µdxν =

ĝij

a2

(
d(a2ĝjk)dx

k − 1

2

∂ds2

∂xj

)
=
ĝij

a2

(
2aȧĝjkdtdx

k + a2dĝjkdx
k − a2

2

∂dŝ2

∂xj

)
=

2ȧ

a
dtdxi + Γ̂i

Γitj = Γijt =
ȧ

a
δij Γijk = Γ̂ijk

Example 3 ds2 = Iab(u)duadub + r2(u)ĝij(x)dxidxj

Γa = Iab
(
dIbcdu

c − 1

2

∂ds̄2

∂ub
− 1

2

∂r2

∂ub
dŝ2

)
= Γ̄a − rIab∂brdŝ2

Γabc = Γ̄abc Γaij = −rIab∂brĝij
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Γi =
ĝij

r2

(
d(r2ĝjk)dx

k − 1

2

∂ds2

∂xj

)
=
ĝij

r2

(
2r(∂ar)ĝjkdu

adxk + r2dĝjkdx
k − r2

2

∂dŝ2

∂xj

)
= 2

∂ar

r
duadxi + Γ̂i

Γiaj = Γija =
∂ar

r
δij Γijk = Γ̂ijk

How to derive ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2?
x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ


x2 = r2 sin2 θ cos2 φ

y2 = r2 sin2 θ sin2 φ

z2 = r2 cos2 θ
dx2 = (sin2 θ cos2 φ)dr2 + (r2 cos2 φ)d sin2 θ + (r2 sin2 θ)d cos2 φ

dy2 = (sin2 θ sin2 φ)dr2 + (r2 sin2 φ)d sin2 θ + (r2 sin2 θ)d sin2 φ

dz2 = (cos2 θ)dr2 + (r2)d cos2 θ

ds2 = dx2 + dy2 + dz2 =


(sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ)dr2

r2
[
(cos2 φ+ sin2 φ)d sin2 θ + d cos2 θ

]
r2 sin2 θ(d cos2 φ+ d sin2 φ)

5 Notions & Curvature tensor

Define covariant derivative:
DλW

µ ≡ ∂λW
µ + ΓµλνW

ν

Introduce notions

∂µ ≡
∂

∂xµ
W µ
,λ ≡ ∂λW

µ W µ
;λ ≡ DλW

µ

W µ
;λ = W µ

,λ + ΓµλνW
ν

Aµ and Bν are vector fields. Define commutator C = [A,B]:

Cν = [A,B]ν = Aµ(∂µB
ν)−Bµ(∂µA

ν) = Aµ(DµB
ν)−Bµ(DµA

ν)

DµW
µ = ∂µW

µ +

(
1√
−g

∂µ
√
−g
)
W µ

DλW
µ ≡ ∂λW

µ + ΓµλνW
ν

Riemann curvature tensor

Rσ
ρµν = (∂µΓσνρ + ΓσµκΓ

κ
νρ)− (∂νΓ

σ
µρ + ΓσνκΓ

κ
µρ)

Note that this tensor anti-symmetric(https://zhuanlan.zhihu.com/p/163705623)

Rλ
ρµν =

(
∂µΓλνρ − ∂νΓλµρ

)
+
(
ΓλµσΓσνρ − ΓλνσΓσµρ

)
= −Rλ

ρνµ
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Outer product and Tensor product

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ

Rλ
ρµνdx

µ ⊗ dxν =
1

2!

(
Rλ
ρµνdx

µ ⊗ dxν +Rλ
ρνµdx

ν ⊗ dxµ
)

=
1

2!
Rλ
ρµνdx

µ ∧ dxν = Ωλ
ρ

d(fdxµ ∧ dxν ∧ · · · ) = df ∧ dxµ ∧ dxν ∧ · · · = (∂λf)dxλ ∧ dxµ ∧ dxν ∧ · · ·

In order to calculate curvature tensors faster, attempt:

1

2

(
∂µΓλνρ − ∂νΓλµρ

)
dxµ ∧ dxν =

(
∂µΓλνρdx

µ ∧ dxν − ∂νΓλµρdxµ ∧ dxν
)

=
(
∂µΓλνρdx

µ ∧ dxν − ∂µΓλνρdx
ν ∧ dxµ

)
= ∂µΓλνρdx

µ ∧ dxν

=
(
dΓλνρ ∧ dxν

)
1

2

(
ΓλµσΓσνρ − ΓλνσΓσµρ

)
dxµ ∧ dxν =

1

2

(
ΓλµσΓσνρdx

µ ∧ dxν − ΓλνσΓσµρdx
µ ∧ dxν

)
=

1

2

(
Γλµσdx

µ ∧ Γσνρdx
ν + Γλνσdx

ν ∧ Γσµρdx
µ
)

=
(
Γλµσdx

µ
)
∧
(
Γσνρdx

ν
)

= Aλσ ∧ Aσρ

Rλ
ρµνdx

µ ⊗ dxν =
1

2!
Rλ
ρµνdx

µ ∧ dxν = Ωλ
ρ

=
1

2

[(
∂µΓλνρ − ∂νΓλµρ

)
+
(
ΓλµσΓσνρ − ΓλνσΓσµρ

)]
dxµ ∧ dxν

=
1

2

(
∂µΓλνρ − ∂νΓλµρ

)
dxµ ∧ dxν +

1

2

(
ΓλµσΓσνρ − ΓλνσΓσµρ

)
dxµ ∧ dxν

=
(
dΓλνρ ∧ dxν

)
+
(
Γλµσdx

µ
)
∧
(
Γσνρdx

ν
)

= dAλρ + Aλσ ∧ Aσρ = Ωλ
ρ

Rklij = glmR
m
kij

R = Rklijdx
k ⊗ dxl ⊗ dxi ⊗ dxj

R = Rl
kijdx

k ⊗ ∂

∂xl
⊗ dxi ⊗ dxj

Introduce Bianchi identities

Rabcd +Radbc +Racdb = Ra[bcd] = 0

∇eRabcd +∇dRabec +∇cRabde = Rab[cd;e] = 0

8



:::::
Ricci

:::::::
tensor, or Ricci curvature tensor assigns to each tangent space of the manifold a

symmetric bilinear form, describing the volume inside one given Riemannian metric compared
to that in n-dim Euclidean space.

Ric =
∑
ij

Rijdx
i ⊗ dxj = Rijdx

i ⊗ dxj =
∑
k

Rk
ikjdx

i ⊗ dxj

Rβν ≡ Rα
βαν

Moreover, there is curvature scalar:
R ≡ gµνRµν

6 How to derive Einstein field equation

ref - https://www.zhihu.com/question/53496530/answer/544322909
ref - https://www.zhihu.com/question/53496530/answer/258731044

The field equation to describe General Relativity must be such a form: Gµν = κT µν , where
Gµν is Einstein tensor, describing how spacetime bends; κ is a coefficient; T µν represents stress-
energy tensor, for the distribution of energies. The left side is the paramount part...

:::::
Let’s

::::::
guess. Note that we have some conditions,

• First, there should be a tensor eq, keeping invariant under coordinate transformations;

• According to the symmetry of stress-energy tensor, namely ∇µT
µν = 0, thus ∇µG

µν = 0
for Einstein tensor;

• In classical limit, it should be approximated as Newtonian gravity ∇2Φ = 4πGρ.

In classical mechanics, the gravity is written as ∇2Φ = 4πGρ, where Φ is gravitational
potential. In relativistic world, density would be replace by energy-momentum tensor, and Φ
turns to the metric gµν .

Therefore, we could guess that the eq should satisfy properties below

F (g, ∂λg, ∂γ∂σg)µν ∝ Tµν

where Fµν is a (0,2) tensor depending on the gauge and its first/second derivatives. Thus, we
try Ricci tensor naturally

Fµν = Rµν

However, it seems impossible, since we have

∇µTµν = 0 ∇µRµν =
1

2
∇νR

we then try to construct new term

∇µ(Rµν −
1

2
Rgµν) = ∇µRµν −

1

2
gµν∇µR = ∇µRµν −

1

2
∇νR = 0 = ∇µTµν

then we write

Rµν −
1

2
Rgµν = Gµν = κTµν

9



Then next target is the parameter κ. Note the stress-energy tensor for ideal fluids in the
classical limit

Tµν = (ρ+ p)UµUν + pgµν

we ignore the pressure for the low velocity

Tµν = ρUµUν

in the rest frame of reference, we have
T00 = ρ

Thus,
T = gµνTµν = −ρ

R = κρ

as a result, R00 = 1
2
κρ. According to the definition of Rµν , we know R00 = Rµ

0µ0. Since
Riemannian tensor is anti-symmetric, R0

000 = 0. In addition, we suppose the gravitation field
is rest under Newtonian limit, and all first derivatives of the gauge equal to zero.

R00 = −1

2
∇2h00

where h00 is the perturbation of the gauge, hµν = gµν − ηµν , then

∇2h00 = −κρ

From the geodesic equation, h00 = −2Φ

∇2(−2Φ) = −2∇2Φ = −κρ

Compared with ∇2Φ = 4πGρ in classical mechanics, we obtain immediately

κ = 8πG

then we determine Einstein Field Equations:

Rµν −
1

2
Rgµν = 8πGTµν

Furthermore, ∇µgµν = 0. If we add one term Λgµν on the left, the eq still satisfies, since all
covariant derivatives equal to 0.

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν

where Λ is called cosmological constant, regarded as a possible form of Dark energy. To obtain
that, we could add one term on the right for vacuum energy density, T

(vac)
µν = ρ(vac)gµν , furnishing

Rµν −
1

2
Rgµν = 8πG(Tµν + T (vac)

µν )

simply ρ(vac) = Λ
8πG

. Since vacuum energy density is only different from the cosmological
constant with one constant, we often regard these two conceptions equivalently.
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7 Experimental evidences of GR

In 1927, G. D. Birkhoff proved, the gauge with spherical symmetry in vacuum must be rest,
written as one form independent with time t.

ds2 = b(r)c2dt2 + a(r)dr2 + r2(dθ2 + sin2 θdφ2)

• If the gravitational source is spherical symmetric, external fields must be spherical sym-
metric;

• No matter rest or not, if the distribution inside the gravitational source keeps spherical
symmetric, external gravitation fields must stay rest and spherical symmetry;

Suppose functions a and b could be written as

a(r) ≡ eµ(r) b(r) ≡ −eν(r)

after calculating their gauges, Christoffel symbols, Ricci tensors, and inserting them into vac-
uum field equation

dµ

dr
+
dν

dr
= 0 1− eµ − rdµ

dr
= 0

µ+ ν = A e−µ = 1− B

r

According to Newtonian gravitational potential, we get the constant B as 2GM/c2, and finally

ds2 = −c2

(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
it is the Schwarzschild solution for field equations, which only depends on the total mass of
source. If r turns to infinity:

ds2 = −c2dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
Define gravitational radius,

rg =
2GM

r2

namely the event horizon of black holes. Inside the event horizon, r is a time coordinate, instead
of a space coordinate. dr is not the proper distance, unless r turns to infinity.

Atomic Emission Spectrometry, its intrinsic frequency changes with the frame of reference,
but the number of vibration keeps invariant.

ν1dτ1 = dN1 = dN2 = ν2dτ2

ν2 =

√(
1− 2GM

c2r1

)
/

(
1− 2GM

c2r2

)
· ν1

in the infinity, we always observe the gravitation redshift, since the clock becomes slower.
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The perihelion shift of Mercury’s orbit, is the second-order effect of
(
GM
cr

)
, which is the most

important one for GR.

∆ϕ ∝
(
GM

c2R

)2

According to GR, we could predict that the light would change the direction inside the
gravitational field, compatible with “gravitational redshift”. Both are the first-order effect of(
GM
cr

)
. Strictly, “gravitational redshift” only verifies the equivalent principle, while the other

two cases verify the field equation.

8 Black Hole...

Schwarzschild spacetime is the Riemannian spacetime with gauge difference ±2. In such a
spacetime similar to Minkowski one, with undetermined gauge, there would probably be a
special hypersurface, whose normal vector is null vector. Since the normal vector is not zero,
however with zero length, we call such hypersurface “Null hypersurface”, whose normal vector
is also the tangent vector at the same time. Suppose

f(xµ) = f(x0, x1, x2, x3) = 0

is a 3-dim hypersurface in 4-dim spacetime, with normal vector defined as

nµ =
∂f

∂xµ

Define the length of normal vector

nµn
µ = gµνnµnν = gµν

∂f

∂xµ
∂f

∂xν

If the eq above is equal to 0, then the hypersurface is null hypersurface. If with symmetry in
the spacetime, we call this special null hypersurface the event horizon.

As for the Schwarzschild solution,

ds2 = −c2

(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
there is a singular point at r = 0, and a singular surface for r = 2GM

c2
(only coordinate singularity

due to non-ideal coordinate system chosen without spacetime curvature divergence here). The
latter one is just the surface of the black hole, or the infinite redshift surface, where the clock
becomes infinitely slow.

Inside the black hole, since r < 2GM
c2

, g00 > 0, iso-r surface inside the hole is indeed
isochronous surface, or unidirectional membrane. r = 0 is not the sphere center, the end of
time instead (not included in spacetime). Similarly, there is white hole, whose sphere center is
the beginning of time, with the different direction.

Suppose the material point falls freely from r = r0, and describe with I. D. Novikow coor-
dinate system:

ds2 = −dτ 2 +

(
R2 + 1

R2

)(
∂r

∂R

)2

dR2 + r2dθ2 + r2 sin2 θdφ2

12



Time coordinate of Novikow system is just the proper time of the material point above. (τ, R)
could be related to (t, r) (Schwarzschild coordinate) by parameters (η, r0)

τ =
r0

2

( r0

2M

)1/2

(η + sin η)

R =
( r0

2M
− 1
)1/2


t = 2M ln

∣∣∣∣∣
(
r0

2M
− 1
)1/2

+ tan η
2(

r0
2M
− 1
)1/2 − tan η

2

∣∣∣∣∣+ 2M
( r0

2M
− 1
)1/2 [

η +
r0

4M
(η + sin η)

]
r =

r0

2
(1 + cos η)

if η = 0, r = r0 and τ = 0, the material point stays rest. When it arrives at the surface of black
hole r = 2M , we have

cos η =
4M

r0

− 1

At this moment τ is not infinite. If r = 0, namely at the singular point, we have η = π, then

τ =
πr0

2

( r0

2M

)1/2

Therefore, as for material points, it could penetrate the event horizon and arrive the singular
point in finite time. However, for the observer far away, material points could only approach
the surface, and furnish more redshift signals, instead of falling in.

Define turtle coordinate

r∗ = r + 2M ln

∣∣∣∣r − 2M

2M

∣∣∣∣
then the event horizon at r → 2M turns to r∗ → −∞.

Define Eddington-Finkelstein coordinates v and u, or Eddington coordinates for short

v = t+ r u = t− r

v, advanced Eddington coordinate; u, delayed Eddington coordinate. So the Schwarzschild is
presented by u and v shown below

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dθ2 + r2 sin2 θdφ2

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2dθ2 + r2 sin2 θdφ2

we might regard u or v as“time”, without divergence at singular surface, covering spacetime in
or out the event horizon and itself.

Introduce Kruskal coordinate system to cover the whole Schwarzschild metric
r > 2M , I zone 

T = 4M
( r

2M
− 1
)1/2

er/4Msh
t

4M

R = 4M
( r

2M
− 1
)1/2

er/4Mch
t

4M

13



r > 2M , II zone 
T = −4M

( r

2M
− 1
)1/2

er/4Msh
t

4M

R = −4M
( r

2M
− 1
)1/2

er/4Mch
t

4M

r < 2M , F zone 
T = 4M

(
1− r

2M

)1/2

er/4Mch
t

4M

R = 4M
(

1− r

2M

)1/2

er/4Msh
t

4M

r < 2M , P zone 
T = −4M

(
1− r

2M

)1/2

er/4Mch
t

4M

R = −4M
(

1− r

2M

)1/2

er/4Msh
t

4M

Re-write ds2 in Schwarzschild spacetime

ds2 =
2M

r
e−r/2M(−dT 2 + dR2) + r2(dθ2 + sin2 θdφ2)

where (R, T ) Kruskal coordinates, T time coordinate, R for space coordinate. r could be
presented by R and T :

16M2
( r

2M
− 1
)
er/2M = R2 − T 2

Kruskal coordinate system could describe the total Schwarzschild spacetime, covering the
event horizon of black holes. Also, it could describe all processes (black holes, white holes). All
geodesic could be extended into infinity (not including those toward essential singular points).
I zone, the universe outside the black hole; F zone, black hole; P zone, white hole; II zone,
another universe outside the black hole, without any information communication with ours.

Penrose diagram. By conformal transformation, infinity in Minkowski spacetime would be
compressed into finite distance.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Ein-
stein field equations, which corresponds to the gravitational field of a charged, non-rotating,
spherically symmetric body of mass M . The analogous solution for a charged, rotating body
is given by the Kerr–Newman metric.

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2

In 1963, R. P. Kerr obtained a static solution to the Einstein field equations (axial symmet-
ric)

ds2 = −
(

1− 2Mr

ρ2

)
dt2+

ρ2

∆
dr2+ρ2dθ2+

[
(r2 + a2) sin2 θ +

2Mra2 sin4 θ

ρ2

]
dφ2−4Mra sin2 θ

ρ
dtdφ

ρ2 = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2

14



the gauge does not include t and φ, so this is static axial-symmetric spacetime. But it does not
stay rest, because of the presence of dtdφ.

There are two parameters for this solution, mass M and angular momentum J . (a =
J/M) Later, E. T. Newman etc found Kerr-Newman solution for charged cases, describing a
gravitation field outside one charged rotating star:

ds2 =−
(

1− 2Mr −Q2

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

+

[
(r2 + a2) sin2 θ +

(2Mr −Q2)a2 sin4 θ

ρ2

]
dφ2 − 2(2Mr −Q2)a sin2 θ

ρ2
dtdφ

ρ2 = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2 +Q2

Similar with Kerr solution, this is a static, axial-symmetric spacetime, without t and φ in the
gauge (but no orthogonal axes). This solution depends on three parameters: the total mass
M , the total angular momenta J , the total charge Q.

Note that all solutions above are set in the vacuum, and we say that externals of stars are
all in vacuum. If charged, there is only electromagnetic field in the externals.

If M 6= 0, J 6= 0 but Q = 0, Kerr-Newman spacetime returns to Kerr spacetime; if M 6= 0,
Q 6= 0 but J = 0, it turns to R-N spacetime; if M 6= 0, J = 0, Q = 0, then to Schwarzschild
spacetime.

If r = 0, θ = π/2, as well as

r± =
GM

c2
±

√(
GM

c2

)2

−
(
J

Mc

)2

− GQ2

c4

K-N spacetime has singular gauge.
As for ν = ν0

√
−g00, if redshift is unlimited, we know that g00 = 0. Then we could obtain

a solution with two infinite redshift surfaces for K-N spacetime.

rs± = M ±
√
M2 − a2 cos2 θ −Q2

The event horizon for Kerr-Newman spacetime (gµν∂µf∂νf = 0)

r± = M ±
√
M2 − a2 −Q2

Material points could stay rest inside or outside the infinite redshift surface of K-N space-
time. However, it could not at the surface. In the space-like zone, staying rest means superlu-
minal motion, forbidden by GR. Mach thought that a rotating object would drag substances
nearby by Ω = dφ/dt. At the event horizon, ĝ00 = 0, and the dragging velocity is determined
by only one value

Ω = lim
r→r±

(
−g03

g33

)
=

a

r2
± + a2

Define surface gravity κ, the limit of multiplication between its proper acceleration b and
redshift factor, while one object approaches the surface of black holes.

κ± = lim
r→r±

b
√
−ĝ00 =

r+ − r−
2(r2
± + a2)
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For charged Kerr-Newman black holes, we could also calculate their electrostatic potential at
two poles of the event horizon.

V± =
Qr±

r2
± + a2

No-hair theorem: The no-hair theorem states that all black hole solutions of the Ein-
stein–Maxwell equations of gravitation and electromagnetism in general relativity can be com-
pletely characterized by only three externally observable classical parameters: mass, electric
charge, and angular momentum.

J. Bekenstein & L. Smarr found the equation:

M =
κ+

4π
A+ + 2Ω+J + V+Q

A+ = 4π(r2
+ + a2) κ+ =

r+ − r−
2(r2

+ + a2)
Ω+ =

a

r2
+ + a2

V+ =
Qr+

r2
+ + a2

dM =
κ+

8π
dA+ + Ω+J + V+Q

which is quite similar with First Law of Thermodynamics:

dU = TdS + ΩdJ + V dQ

Similarly, there should be the entropy S for black holes, proportional to the area; and temper-
ature T proportional to surface gravity κ.

S =
kB
4
A+

(
c3

G~

)
T =

~κ+

2πkBc

As the extreme black holes, M2 = a2 +Q2, inner and outer event horizons united, leading to
zero surface gravity. So extreme black holes could be regarded as black holes in absolute zero
temperature. According to Third Law of Thermodynamics, we could not make a non-extreme
black hole become an extreme black hole by finite operations. To sum up, we have 4 laws of
black hole thermodynamics:

• 0: the surface gravity κ for static black holes is a constant;

• 1: dM = κ+
8π
dA+ + Ω+J + V+Q

• 2: dA+ ≥ 0, the surface of black holes would not decrease along the time direction;

• 3: could not make a non-extreme black hole become an extreme black hole by finite
operations;
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9 Introduction of Cosmology

Cosmological principle: the spatial distribution of matter in the universe is homogeneous and
isotropic when viewed on a large enough scale, since the forces are expected to act uniformly
throughout the universe, and should, therefore, produce no observable irregularities in the
large-scale structuring over the course of evolution of the matter field that was initially laid
down by the Big Bang.

In order to obtain the static universe model independent of time, we have to insert “repelling
effect” into the field equation, to get finit, boundless static universe model.

Rµν −
1

2
gµνR + Λgµν = κTµν

The constant Λ is called
:::::::::::::
cosmological

:::::::::
constant.

In general, we call the case Λ = 0 as Friedmann model, Λ 6= 0 as Lemaitre model. Einstein’s
static model is just a special one.

Three results from observation support the Big Bang model.

1. Hubble’s law: galaxies are moving away from the Earth at speeds proportional to their
distance; v = HD

2. Abundance of helium in the universe is about 25%;

3. Cosmic microwave background, about 2.7K;

Consider a 3-dim hypersphere embedded into 4-dim Euclidean space,

xµxµ = xixi + x4x4 =
1

K

it should be a 3-dim space with constant curvature K

dx4 = −x
idxi

x4

(dx4)2 =
(xidxi)2

1
K
− xixi

=
K(xidxi)2

1−Kxixi

dσ2 = dxµdxµ = dxidxi +
K(xidxi)2

1−Kxixi

dσ2 =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

If K > 0, it is the normal hypersphere; if K = 0, namely normal hyperplane; if K < 0, a
pseudo-hypersphere.

From cosmological principle, the curvature of 3-dim space should be all the same everywhere.
Even though it probably changes along time, K is not the function of space, only the function
of time. Thus the general form for gauges of 4-dim universe:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
17



this is the important Roberston-Walker gauge, with K . Here, K could be positive, negative,
or zero. With follow-up coordinate system (coordinates of material points would not change if
expansion), the distance of two points is proportional to a(t), which is called the scale factor.

ρ =
3

8πG

[
K

a2
+

(
ȧ

a

)2
]

=
3K

8πGa2
+

3

8πG
H2

Define the critical density

ρc =
3

8πG
H2 = 5× 10−30g/cm3 ≈ 3 nucleons/m3

What’s more

p = − 1

8πG

[
K

a2
+H2(1− 2q0)

]
where

q0 = − äa
ȧ2

is called deceleration parameter. As for the case p = 0, K = a2H2(2q0 − 1).

Density Deceleration parameter Curvature Type Characteristics
ρ > ρc q0 > 1/2 > 0 Finite, boundless Expansion or Contraction
ρ = ρc q0 = 1/2 = 0 Infinite, boundless Expansion
ρ < ρc q0 < 1/2 < 0 Infinite, boundless Expansion

From the obeservation, ρ < ρc but q0 > 1/2. Even though it’s different from the tableau above,
the curvature is almost 0... Also, it’s found that the deceleration parameter depends on time,
the universe would expand increasingly. To explain, “dark energy” was supposed. There are
plenty of dark matter, as well as dark energy with repelling effect inside the universe. The
evolution of universe might be a synthetic result by matter, dark matter, and dark energy.
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